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Abstract 
 

As governments seek to bolster electric vehicle popularity by constructing vast networks of 
charging stations, determining the optimal location for these chargers is an open debate. 
Numerous researchers have offered conflicting solutions through a variety of approaches, most 
of which are different variations of location optimization models. There exists a hole in the 
literature in determining how businesses and other points of interest are selected as ideal 
locations for charging stations. This study uses a multi-criteria evaluation optimization model to 
score all businesses in an area of study with regards to their compatibility for installation of 
electric vehicle charging stations. The model could be used by local governments to determine 
where to install public use charging stations in their municipality with a fixed amount of money 
to spend. As more grants and rebate programs become available for charging station installers, 
location selection models will play an important role in determining whether charging stations 
are found in convenient places for electric vehicle owners. 
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Introduction 
 

One of the major contributors to humanity’s carbon footprint is transportation, especially 
the global fleet of personal vehicles used for commuting, traveling, and leisure. According to the 
United States Environmental Protection Agency, the average American internal combustion 
engine (ICE) vehicle guzzles down 528 gallons of fossil fuels and pollutes 4.7 metric tons of 
carbon dioxide into the atmosphere every year. Electric vehicles (EVs) are seen as a potential 
solution to the transportation pollution problem. In this study, EV means any electrically 
powered vehicle that requires direct recharging by the user, including plug-in hybrid electric 
vehicles and battery-only electric vehicles. With 15 percent of the US electrical supply coming 
from renewable sources, EV batteries can be recharged from clean sources, such as wind farms 
and solar panels, reducing dependency on fossil fuel sources that traditional automobiles rely on. 
However, whereas ICE vehicles are sustained by a vast network of 168,000 refueling stations in 
the United States, the current charging infrastructure to support EVs is minimal. As of December 
2018, there were only 20,021 charging stations nationwide.  

There are several reasons why a local government might wish to install charging stations 
in their community. First, and most obvious, is to encourage the adoption of electric vehicles. If 
more places to charge are available, a prospective EV buyer may be more inclined to purchase 
one knowing they have many recharging options. Second, the local government could see an 
improvement in air quality as more residents adopt EVs. Third, EVs are much quieter than ICE 
vehicles, and thus reduce noise pollution. If a municipality contains busy roads in residential 
areas, encouraging EV adoption can help reduce the impact on property owners who live near 
those roadways.  
 
Research Summary 

The purpose of this project is to identify which businesses in a municipality are best 
suited for destination based EV charging stations based on multiple criteria, constrained by a 
fixed amount of money to be spent. All data comes from publicly available sources as to make 
the model usable by any municipality, and to eliminate the need for primary research. Moon 
Township, Pennsylvania, a municipality outside of Pittsburgh and home to Robert Morris 
University, was selected as the area of study. Unlike most published charging station 
optimization research, Moon Township is not an urban city environment, but rather a suburb 
with a majority of zoning being residential. If the township were to receive a grant for charging 
stations, the local government would need a way of selecting the optimal locations for 
installation. In fact, the Pennsylvania Department of Environmental Protection (DEP) is 
awarding up to $3 million in grants for charging station installations in 2019 through its Driving 
PA Forward Program. These grants may be awarded for the full cost of installing charging 
stations for “public use at government owned or non-government owned” properties 
(Pennsylvania Department of Environmental Protection, 2019).  
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A multi-criteria optimization model was formulated to select sites for installation; 
Microsoft Excel’s Solver plugin was used to for analysis. The model considers seven variables 
for each candidate site, and maximizes the number of installations within the constraining 
budget. In this paper, budgets of $50,000, $100,000, and $500,000 were used. A summary of the 
results are shown in Table 1.  
 
Table 1 
Model Results 
 

Amount to 
Spend 

Amount 
Spent 

Sites Selected 
for Installation 

Level 2 CS 
Installed 

Level 3 CS 
Installed 

Average Time 
Spent 

$50,000 $48,930 4 7 0 156 minutes 

$100,000 $97,860 8 14 0 128 minutes 

$500,000 $497,170 43 63 1 81 minutes 
 
 The rest of this paper is organized as follows. First, a literature review will discuss the 
existing charging station optimization research, and highlight what sets this research apart from 
existing models. Second, the linear programming methodology will be presented with the 
equations and constraint formulas used. Third, the computational results will be presented and 
discussed for the three different budget runs of the model. Finally, the report will conclude with a 
summary of the results and acknowledgements of future improvements and applications for the 
model. 

 
Literature Review 

 
Charging Stations 

Whereas refueling an ICE vehicle is rather straightforward, EV recharging uses complex  
techniques (Shahraki, Cai, Turkay, & Xu, 2015). An EV charging station (CS) is defined by Lin 
(2004) as a device that supplies electric energy for recharging EVs. While EVs can be charged at 
home with a standard or higher amperage (dryer) outlet, commercial CS are sold for installation 
at businesses and other public sites. Commercial CS vary in the amount of energy they can 
deliver and the rate at which they can charge an EV; these differences are commonly classified 
as Level 2 or Level 3. Level 2 CS deliver up to 20 kW at up to 80 amps, and most use a J-1772 
type connector (Lin, 2004). These CS take about eight hours to fully charge an EV that arrives 
with a depleted battery. Level 3 CS, also known as “fast chargers,” provide up to 240 kW of 
power at up to 400 amps (Lin, 2004). These CS can mostly recharge a battery, to approximately 
80 percent, in as little as 15 minutes, and can fully recharge an EV in an hour or less.   
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In order to support a turnover of the personal vehicle fleet from gasoline and diesel to 
electric, many millions of CS will be required (US DOE). In fact, the European Union has set a 
goal of installing at least 500,000 CS by 2020 to bolster EV growth in its member countries, and 
similar goals are being set in the United States. Therefore, identifying the best locations for CS is 
an immediate dilemma (Giménez-Gaydou, Ribeiro, Gutiérrez, & Antunes, 2014). Establishing a 
nationwide charging network, built in an optimized way that allows EV owners to maintain an 
existing daily routine, unaffected by the need to charge their car, is important for the further 
expansion of EVs to the public (Marcial, 2012). Studies of prospective EV owners have shown 
that the lack of a public charging infrastructure is among the chief considerations, including 
purchase price and range, discouraging them from purchasing a battery-powered car (Bailey, 
Miele, & Axsen, 2015; Thiel, Alemanno, Scarcella, Zubaryeva, & Passoglu, 2012). A network of 
public CS is needed in order to combat this perceived notion and quash concerns that lead 
purchasers to skip EVs. In order to construct this network in a way that will be convenient for the 
user, the locations of the CS should be carefully considered. Determining these optimal locations 
is an open debate, as numerous researchers have offered conflicting solutions through a variety 
of approaches.  
 
Location Optimization Models 

Optimizing the location of CS has been a growing topic of interest since the idea of EVs 
was reborn in the late 1990s. These optimization studies would be used not only by city planners 
and governments to build the charging infrastructure, but also by businesses to determine how 
big demand may be for CS at their location, and by power companies to estimate the potential 
grid impact of the stations (Zhang, 2016). These projects are typically modeled in mathematical 
software, such as R or Matlab, or in geographic information systems (GIS) simulators, such as 
ArcGIS and QGIS (Brady & O’Mahony, 2016). One goal of this project was to avoid the use of 
these sophisticated, sometimes costly software packages and instead use a more common and 
accessible program, in this case Microsoft Excel.  

There is an even split in the literature reviewed between optimizing CS locations in small 
areas, such as cities and suburbs, and large area charging corridors, such as interstate highway 
systems. Generally, in small area studies, Level 1 and Level 2 chargers are used in calculations 
for “destination based” CS, while larger area corridor studies used Level 3 chargers (Li & 
Huang, 2011). In the studies of smaller areas, most consider urban locations. This is most likely 
due to research that found public charging infrastructure is most needed in cities, as EV owners 
in that environment are less likely to have a dedicated overnight parking spot with access to an 
electric outlet than rural EV owners (Bunzeck, Feenstra, & Paukovic, 2011).  This small area 
study is differentiated from previous research as it selects sites for Level 2 and Level 3 CS in a 
suburb. 
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Models using Existing Travel Patterns 
The most common method of collecting the data used as the basis for CS location 

optimization studies is adapting existing traffic flow models (Brady & O’Mahony, 2016). Based 
on the assumption that future EV owners will not want to deviate from their current travel 
patterns with ICE vehicles, Huang et al. (2009) proposed adapting traffic flow models created for 
road and infrastructure planning agencies to predict where CS should be placed by observing the 
most popular travel routes.  When these datasets are not available, a gravity spatial interaction 
model was found to be the next best way to approximate travel patterns. Selecting the highest 
areas of traffic flow from these datasets not only results in modeling CS in locations where the 
highest number of EVs drive near them, but it also increases the profit potential for the station’s 
operator by the same logic (Kong, Jovanovic, Bayram, & Devetsikiotis, 2017). For example, one 
model used a list of commercial addresses provided by the area of study’s power company as 
potential locations for CS. The company selected those businesses by counting the number of 
vehicles driving within a one mile radius of them over a period of time (Huang et al., 2009).  

A complaint against this method is that traffic patterns do not paint a full picture in terms 
of describing a potential site for CS installation. For example, the authors of the previously 
mentioned study acknowledged that future research should use factors “such as proximity of 
public attractions, work locations, and activity durations…to determine attractive and effective 
locations” rather than relying exclusively on traffic flow (Huang et al., 2009, p. 452). Another 
conflict with this method that has been identified through additional research is that EV drivers 
are indeed willing to change where they travel to accommodate CS, within reason. For example, 
a study found that some long distance EV travelers are more likely to eat at a restaurant with CS 
installed than one without (Zhang, 2016).  

While this model uses existing travel data for the average duration of a visit to each 
potential business, it does not consider the popularity of the business; thus, each potential site is 
given an equal chance of selection regardless of popularity (i.e. how many visitors are served by 
the business daily). Since popularity is not considered, the model must rely on other means to 
specify the number of CS to install at each location. 
 
Models using Existing EV Patterns 

Another method involves conducting a study, either small or large scale, of electric 
vehicles or CS already present in the area of study. By tracking real-world travel and usage 
patterns, researchers can make assumptions about charging patterns for a more established CS 
network or for a larger EV fleet. An example study observed 15 EVs in Ireland for 9 months, 
resulting in a database of 18,300 trips which contained valuable information on travel and 
charging behavior (Weldon, Morrissey, Brady, & O’Mahony, 2016). Other research uses a 
combination of empirical and theoretical data to propose typical driving patterns of EV owners. 
A study of 227 vehicles tracked with GPS equipment was combined with simulated trips created 
using the Matlab based ADVISOR Advanced Vehicle Simulator to form the traffic dataset 
influencing their optimization model (Sioshansi, Fagiani, & Marano, 2010). 
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As evident by the small number of vehicles studied in the previously mentioned works, 
studies using this data collection method are a small portion of the literature. Few studies of 
charging behavior by current EV owners have been conducted, and of the few that have been 
published, the sample sizes are usually small. A 2017 literature review found only four peer-
reviewed studies that compiled real-world data from EV drivers that would be useful in finding 
solutions to the charging station location problem (Motoaki & Shirk, 2017). More common than 
studies of EVs themselves are studies of existing CS. One such study gathered usage data from 
public CS in two countries to estimate how EV owners were traveling to recharge (Morrissey et 
al., 2016). These studies have not identified influences on the charging behavior observed. For 
example, a two-year study of 6,000 Nissan Leaf EVs in the United States logged individual 
charging events and their duration. However, as this study did not collect information about the 
individual CS, such as nearby points of interest and proximity to highways, it is unknown to 
what extent these factors impact charge duration (Motoaki & Shirk, 2017). This method was not 
considered for this model, as the goal was to construct new CS as a way to spur EV adoption. A 
municipality may have few, if any, CS already installed and an unknown number of EV owning 
residents when they use a site selection model, meaning a different approach was necessary.  
 
Models Influenced by Several Factors  

Franke and Krems (2013) were among the first to consider charging duration in their 
research CS site selection. Their research studied 79 EV leasers for 6 months to learn about their 
charging patterns. They found that eventually EV owners adjust to charging, and that 78% of EV 
drivers were not bothered by the longer time needed to recharge relative to the time needed to 
refuel a traditional ICE vehicle. In fact, most EV owners surveyed preferred recharging their EV 
at a charging station to visiting a gas station (Franke & Krems, 2013). This indicated that 
charging was not seen as a negative influence or a significant barrier to EV ownership after 
purchase, and that continuing to place EV CS in places where the experience is enjoyable is 
important.  

Efthymiou et al. (2009) used total population, average income, distance from parking, 
and total number of points of interest as the variables in their model. Each variable was given a 
certain weight, and then measured within 200 meters of each intersection in the area of study to 
determine which intersections were the optimal locations for EV chargers. While the first three 
variables are easily stated quantitatively, the fourth relies on a level of qualitative judgment. The 
researchers did not define what qualified as a “point of interest,” nor did they specify if all of 
these points were treated equally (e.g. a restaurant and a statue). However, they did conclude that 
optimal locations were more positively affected by population and income than points of interest 
nearby (Efthymiou et al., 2009). 

Results can vary greatly when cost to the EV owner is considered as a factor in the study. 
To account for this, most studies perform two separate runs of their models, one unaffected by 
the price per charge, and a second assuming that owners will attempt to minimize expenses by 
charging where and when electricity is least expensive (Huang et al., 2012). Depending on the 
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model chosen, how often an EV owner decides to charge at home rather than using a public CS 
differs. It has been measured that a typical electric vehicle charged exclusively at the owner’s 
home would add around 3,000 kWh of electricity consumption per year. That added cost to a 
home’s electric bill could push EV owners to search for cheaper charging options, such as at 
public places or their workplace (Langbroek et al., 2017). Conversely, EV users are unlikely to 
spend more money using a charging station at their destination if they know they can recharge 
for less money at home. This indicates that businesses should consider the operating costs before 
installing CS, as the charger is unlikely to be used frequently if it presents uncompetitive cost to 
EV owners (Zhu, Gao, Zheng, & Du, 2017). While this study does not address the cost incurred 
by EV owners for using the installed CS, it does consider the cost of installation as it aims to 
install as many CS as possible within the defined budget.  
 
Defining and Limiting Potential Locations 

The literature largely ignored the question of how EV users would spend their time while 
their car recharged at a public station, i.e. the personal and social influences on location. For 
example, a proposed location optimization model based on 12 factors used none related to points 
of interest (e.g. shopping centers) near the potential charging station location (Wu & Niu, 2017). 
Using this or a similar model could result in CS being built in locations where the driver has 
nothing to do but sit in their vehicle and wait for the duration of the charge. This is problematic, 
as other research has shown that EV drivers are more likely to select CS within walking distance 
of an activity, such as dining or shopping (Zhang, 2016). A study modeling CS in cities 
identified shopping malls and gyms as examples of attractive locations because visitors are likely 
to stay there for extended periods of time (Ghamami et al., 2015). These potential locations were 
identified by brainstorming; places where cars spend extensive amounts of time was not 
measured quantitatively, nor were studies of travel patterns used to back up the claim. Instead, 
this study uses publically available data that measures duration of visit quantitatively, rather than 
relying on qualitative means.  

Another location optimization study evaluated 222 retail locations. The researchers 
arrived at this list of potential sites from three factors: first, stores and shopping centers are likely 
to have the parking spaces and electrical infrastructure to support CS; second, shoppers are likely 
to spend enough time in the store to allow a Level 2 or Level 3 charger to add a worthwhile 
amount of charge; and third, retail locations were found to already be evenly distributed, 
assisting in the location optimization of the CS. While this study was limited to retail locations, it 
was the only work found that used several factors to preselect potential sites for use in the 
location optimization simulation (Wu & Sioshansi, 2017).  

Another study, that did not perform any location optimization modeling, asked current 
and potential EV owners to rate a list of commercial sites for potential CS installation. The study 
asked respondents to rate how likely they would be to use CS at “shopping facilities, leisure 
facilities, motorway service stations, gas stations, workplaces, and educational institutes” within 
the area of study (Philipsen, Schmidt, Heek, & Ziefle, 2016). This list was formed by a previous 
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focus group of prospective EV owners which identified these locations as places where they 
could see themselves charging (Philipsen, Schmidt, & Ziefle, 2012). No study was found that 
used this (or similar) datasets to mathematically verify whether the hypothetical places named by 
focus groups would be effective locations in a charging network.  
 
Literature Summary 

After reviewing the literature, it can be said that determining the optimal location for CS 
is an open debate. As the amount of research for this topic continues to grow, it seems so does 
the divide between offered solutions. Each location optimization model described in the 
literature uses different, and sometimes conflicting, influencing variables, thus offering different 
interpretations of the ideal CS location. There is a hole in the literature regarding how EV 
owners will spend their time while their car is charging. This study aims to find a home in that 
gap, as a model to select potential locations with an effective duration of visit that is also near 
points of interest. Studies that began with a list of preselected ideal locations offered no clear 
method for selecting these locations, thus this model considers all businesses in the township as 
candidates. 

 
Linear Programming Formulation 

 
 This research uses a multiple criteria evaluation technique, which considers six data 
points for each candidate site, and results in a score, y, for each location (Efthymiou, 2009). The 
problem’s decision variables are the number of CS installed at each candidate location. These 
values, 𝑛!, were restricted to integers zero, one, or two. As these values change, each candidate 
location’s score value also changes. The score, 𝑦, is the weighted sum of the six coefficients for 
each candidate location, and is solved for using this formula:  
 

𝑦 = 𝑛!!!"#$%# !"#"$%&!(𝑥!"#$%&##&##!!"#$%&!"'#$%()* + 𝑥!"#$!%#&'(#)*#+& +
𝑥!"!#$%&'"(

100
+ 𝑥!!"#$!%!&'#()*!+ + 𝑥!"#$%&'!!!!"#$!%!&'#()!"# − 10 ∗ 𝑥!"#$%&'($)"&$(*#$%$() 

 
The goal of the problem is to maximize the objective function, which is the sum of all 141 score 
values, as shown below: 

𝑦!

!"!

!!!  

 

 
Three constraints were necessary for the problem. First, as previously described, the number of 
charging stations installed at each site had to be zero, one, or two. Second, the number of 
charging stations installed at each site had to be less than or equal to the capacity for that site. 
The capacity, which was zero, one, or two, depended on the number of parking spaces at the site. 
If a site had fewer than 20 parking spaces, the CS capacity was zero. If a site had 20-39 parking 
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spaces, the CS capacity was one. If a site had 40 or more parking spaces, the CS capacity was 
two. The final constraint was the total amount spent had to be less than or equal to the budgeted 
amount to spend. The total amount spent was the sum of each location’s installation cost. 
Installation cost, c, was dependent on two other conditions: (1) the number of charging stations 
installed at the location, n, and (2) the level of charging station appropriate for the location. 
 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑠𝑝𝑒𝑛𝑡 = 𝑛!𝑐!

!"!

!!!  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Solver Parameters window used to formulate the problem in Microsoft Excel. 

 
Methodology 

Environment 
 The three model runs were solved in under one minute using Microsoft Excel 2011 and 
its Solver plugin on a 2013 Apple Macbook Pro, with a 3 GHz Intel i7 processor and 8 GB of 
RAM. Any modern computer running Microsoft Excel 2011 or newer will be able to solve the 
problem. Since the problem was linear, the LP Simplex engine was used as the solving method. 
The variable cells that Excel Solver was able to change were the number of charging stations 
installed at each candidate location. 
 
Candidate Selection Constraints 
 For the purpose of this research, a business is defined as a commercial site that is open to 
the general public. No residential, educational, or recreational sites were considered candidates. 

Objective 
Function (cell is 
sum of all score 
cells) Decision Variables 

(number of CS 
installed at each 
location) 

Amount spent 
must be less than 
or equal to 
amount budgeted The decision 

variables are 
constrained by 
each location’s CS 
capacity The decision 

variables must be 
an integer 
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In addition, offices or other places of work that are not open to visitors from the general public 
were not considered. Hotels were also not considered as candidates for this project because while 
they are open to the public, they generally do not serve residents of the township using resources 
to install the CS.  

Beyond these constraints, each business was required to meet two criteria in order to be 
eligible for CS installation. First, the business must have at least 20 parking spaces. The purpose 
of this constraint was to reduce frustration from non-EV owners who may become annoyed if 
spaces reserved for EVs replaced some of the few spaces a small business may have. Since it is 
projected that 5% of the United States car fleet will be electric by 2020, the project would not 
consider businesses where greater than 5% of parking spaces would be reserved for a single CS. 
This requirement also ensured that the selected site would have enough space to support the 
infrastructure associated with Level 3 charging stations, which may include transformers and 
other equipment necessary to connect to the electrical grid. The second eligibility criteria was the 
business must have an average time spent of at least 15 minutes. If a visitor is spending less than 
15 minutes at the business, it was assumed that it would not be a quality site for a CS. As shown 
in the literature review, prior CS location selection research largely ignored this important 
characteristic of potential sites, or used subjective descriptors. This study sought to identify, 
using real “time spent” data from Google business listings, the locations in the township where 
people spend the most time in order to maximize the potential EV charging time.  

A unique consideration for this study was whether or not to include businesses with an 
average time spent of more than eight hours, which is the average time for a Level 2 CS to fully 
charge an EV. Since Moon Township shares a border with Pittsburgh International Airport, there 
are many long-term parking businesses located in the township. These businesses have the 
longest average time spent of all businesses in the township, usually lasting for several days. 
Since an objective of this study is to serve as many EVs as possible, and avoid a CS being 
occupied by a fully charged EV for long periods of time, this study does not consider these types 
of businesses to be candidates. This decision is supported by research that shows EV owners are 
unlikely to use public charging infrastructure for long periods of time, as one study showed 75% 
of public charging durations are less than three hours (Morrissey et al., 2016). Additionally these 
businesses would be best served by cheaper Level 1 CS, which were not considered in this study.  
 
Data Considered 

Each business considered a candidate was analyzed by six variables of publicly available 
data. The six variables considered were distance from an interstate highway, the number of 
businesses sharing the parking lot, average time spent, population within 1 mile of the business, 
the business’ hours of operation per week, and the business’ overnight hours of operation per 
week. Using Google Maps measurements, the driving distance from each business to the nearest 
interstate highway was determined. This variable was minimized by assigning it a weight of -10 
in the optimization equation, in order to find businesses close to the highway and thus increase 
the potential flow of traffic to that business. This variable was measured in miles. 



12 
 

Strip malls and other shopping centers were considered as one candidate in the study to 
prevent more than two CS from being assigned to the same parking lot, in order to encourage 
more distribution throughout the township. Using Google Earth, the number of businesses 
sharing a multi-use parking lot was counted and this whole number value was added to the 
optimization equation. For these candidate sites, the business with the greatest sum of the other 
five variables was used as the values for the entire shopping center.  

Using Google search business listings, the average time spent at each candidate location was 
collected. Jordan et al. (2018) were the first to identify this feature as a variable for ranking 
locations for CS installation. This feature, first introduced in 2017, was a major factor in making 
this project possible. The average time spent value, in minutes, was to be maximized by the 
model in order to select sites where people are already spending a significant amount of time. 
The higher this value, the more time an EV owner would have to charge at the location.  
 

Figure 2. Example Google Business listing showing the average time spent. 
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2010 Census data was used to calculate the population within 1 mile of each candidate. An 
online tool created by the University of Missouri displays this value for any entered United 
States address. This value, divided by 100, was added to the optimization equation in order to 
identify sites near the most township residents, and thus increase the potential flow of traffic to 
that business. 

The final two variables dealt with the business’ operating hours. Using Google search 
business listings, the total number of hours each business is open per week was logged. The 
number of overnight hours—defined as operating hours between 7 p.m. and 7 a.m.—that the 
business was open each week was added to the optimization equation as a separate variable, 
effectively giving these hours double weight. There were three key reasons for this decision. 
First, electricity is cheaper overnight and thus businesses that are open in off-peak hours would 
spend less on electricity operating CS than they would during the day. Nighttime charging also 
puts less strain on the electric grid as it is an off-peak period, which will be an important 
consideration as more CS are built (Langbroek et al., 2017). Second, fewer businesses are open 
during overnight hours, meaning EV owners who need to charge already have fewer CS choices 
during this time frame. An undesirable result would be if all CS were built at businesses that only 
operate during the day, leaving overnight EV owners in need of a charge without any options. 
Third, future iterations of the model could use this variable as another factor in determining 
whether a business is best suited for a Level 2 or Level 3 CS. Prior research has shown that Level 
3 CS are most likely to be used at night, as EV owners without home charging equipment need a 
full charge for the next morning and desire the charging time to be as short as possible 
(Morrissey et al., 2016).  
 
Charging Stations Considered 

Both Level 2 and Level 3 charging stations were considered for installation at each 
candidate site. Most previous research on this topic has focused on Level 3 fast charging, without 
acknowledging that at some locations these CS are unnecessary or “overkill.” These previous 
models also fail to recognize the great price increase between Level 2 and Level 3 CS. If a 
municipality has a constrained amount of funds to spend on CS, the municipality can install 
many more CS if they are the cheaper Level 2 rather than the comparatively expensive Level 3. 
The factor that determined whether a site would install a Level 2 or Level 3 charger in this model 
was the average time spent variable. Since most Level 3 CS can fully charge an EV in 60 
minutes or less, if time spent was more than 60 minutes, a fully charged EV would be occupying 
the CS. Since it is desirable for the CS to serve as many customers as possible daily, a business 
with an average time spent of more than 45 minutes would receive a Level 2 CS rather than a 
Level 3 fast charger. This value of 45 minutes was selected because studies have shown that EV 
owners rarely wait to completely deplete their car’s battery before recharging; in fact, the 
average EV still has 60% charge remaining when a new charge event begins (Corchero, 2014). 
Thus, the time required to fully charge is likely not the full hour. Another factor in arriving at 
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this duration was EV Go, a company that manages a nationwide network of CS, limits sessions 
on Level 3 CS to 45 minutes.  
 ChargePoint products were used as the reference CS in this study, as they are a popular 
manufacturer and installer of commercial Level 2 and Level 3 models. The ChargePoint 
CT4013, shown in Figure 6 appended to this report, was used as the reference Level 2 CS, which 
is priced at $3,990. The ChargePoint CPE200, shown in Figure 7 appended to this report, was 
used as the reference Level 3 CS, which is priced at $35,800. The U.S. Department of Energy 
found that the average installation cost of a Level 2 CS is about $3,000, and the average 
installation cost of a Level 3 DC fast charger is about $21,000 (Smith & Castellano, 2015). This 
means the total costs considered for purchase and installation of a public CS are $6,990 for a 
Level 2 and $56,800 for a Level 3.     
 
Distribution 
 The model does not consider any constraints on the distribution of CS throughout the 
township, i.e. the proximity between CS or the density of CS in a certain area. One reason this 
was found not to be necessary is prior research has shown that businesses, such as retail stores, 
are already normally distributed (Wu & Sioshansi, 2017). Thus, in order to keep the model 
focused on the goal of identifying businesses with optimal characteristics for CS, no constraint 
was placed on how close together CS could be. However, as previously described, strip malls 
and shopping centers where many businesses share one parking lot were treated as one candidate 
site, which prevents many CS from being installed in the same parking lot. As shown in the maps 
in Appendix II, despite no consideration of distribution by the model, the sites selected were well 
spread out throughout the entire township.   

 
Results 

 
As expected, the model greatly preferred Level 2 to Level 3 CS due to the significant 

difference in cost. The type of business most selected was different for each of the three budget 
levels. Golf courses were most selected with a budget of $50,000, bars were most selected with a 
budget of $100,000, and medical offices were most selected with a budget of $100,000. 
Interestingly, two of these three types can be visited at any time and somewhat frequently, but 
medical offices require an appointment and may only be visited by the same person once or 
twice annually. Nonetheless, all three types have an average time spent of over an hour, which 
ensure an EV owner visiting them would not be bored while waiting for their car to gain some 
charge. Tables showing the full results for all three budget levels are appended to the end of this 
report. 
 
$50,000 Model 
 The first run of the model was for an amount to spend of $50,000 and resulted in seven 
Level 2 CS installed at four sites. The selected sites were a restaurant, a bar/pub, and two golf 



15 
 

courses with an average time spent of 156 minutes across all four locations. While the selections 
do make sense logically, the two golf courses being selected revealed a problem with the hours 
of operation variable. In a climate like Moon Township, golf courses are seasonal and do not 
keep the same hours in the summer as they do in the winter. While both locations operate year 
round as a country club and restaurant, the average time spent and hours of operation are not 
constant throughout the year. In future iterations of the model, the hours of operation variable 
could be changed from a weekly total to an annual total, or another variable that penalizes 
seasonal businesses could be introduced.  
 

 
Figure 3. Chart displaying the types of businesses selected for the $50,000 budget level. 
 
$100,000 Model 
The second run of the model considered a budget of $100,000 and resulted in the installation of 
14 Level 2 CS at eight sites. The average time spent across these sites was slightly over two 
hours at 128 minutes. Two bars, a drive-in movie theater, and a shopping center were added to 
the four sites selected by the $50,000 model.  
 

 
Figure 4. Chart displaying the types of businesses selected for the $100,000 budget level. 



16 
 

$500,000 Model 
The final model run considered a budget of $500,000 and resulted in the installation of 63 Level 
2 CS and 1 Level 3 CS at 43 different businesses. The most chosen type of business was medical, 
such as dentist, orthodontist, and ophthalmologist offices, which saw eight locations selected. 
Other new categories of businesses selected were car dealerships, dance and karate studios, retail 
stores, spa and beauty, realty offices, and a tattoo parlor. All of these businesses have an average 
time spent of at least 30 minutes.  
 

 
Figure 5. Chart displaying the types of businesses selected for the $500,000 budget level. 

 
Optimal Locations 
Although not the primary focus of this research, two separate runs of the model were conducted 
to identify the optimal business for a Level 2 CS and the optimal business for a Level 3 CS. A 
24-hour restaurant was found to be the best location for a Level 2 CS, as it had the maximum 
hours of operation, was close to the interstate, and had an average time spent of one hour. A 
Walmart Supercenter was selected as the optimal location for a Level 3 CS, with a similar score 
to the aforementioned restaurant, but was restricted to Level 3 by an average time spent of 30 
minutes. 

 
Conclusion 

 This paper has presented a multi-criteria optimization model to aid municipalities in the 
selection of businesses for public use EV CS. In an effort to install CS at locations that would be 
convenient and enjoyable for EV owners, the average time spent at each location was collected 
by use of Google’s business listings. With this approach, a variety of business types were 
selected, and the most popular type of business selected changed with each of the three different 
budget levels used. At the highest budget level of $500,000, which resulted in 43 sites selected, 
the average time spent across those businesses was more than 80 minutes. The results also show 
that when constrained by a fixed budget with a goal to install as many charging stations as 
possible, the model will greatly prefer Level 2 to Level 3 CS. Since all data used is publically 
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available and easy to access, the model can be used by any local government. This model could 
benefit any municipality seeking to install CS at optimal locations on a fixed budget.  
 
Future applications of this research 
 While the intention of this research was to develop a model for municipalities to identify 
the best locations for CS installation, it could also be used by businesses. A business owner who 
is interested in installing a CS could compile values for the variables used in this model in order 
to determine their score value. This value could then be compared to the scores of businesses 
selected by the model previously. If the business’ value is at or above the average value, then the 
owner could view his business as a good location for CS installation; likewise, if their value was 
below average, then they could view the business as a bad fit for a CS. This “compatibility 
checker” tool could run as a web application, and could possibly integrate with Google data to 
easily allow any business to view how suited it is for CS installation.  
  



18 
 

References 
 
Bailey, J., Miele, A., & Axsen, J. (2015). Is awareness of public charging associated with 

consumer interest in plug-in electric vehicles? Transporation Research Part D: 
Transport & Environment, 36, 1-9. doi.org/10.1016/j.trd.2015.02.001 

Brady, J., & O’Mahony, M. (2016). Modelling charging profiles of electric vehicles based on 
real-world electric vehicle charging data. Sustainable Cities and Society, 26, 203–216. 
doi.org/10.1016/j.scs.2016.06.014 

Bunzeck, I., Feenstra, C., & Paukovic, M. (2011). Preferences of potential users of electric cars 
related to charging - a survey in eight EU countries. Grid for Vehicles, 3. Retrieved 
from d-incert.nl 

Corchero, C., Gonzalez-Villafranca, S., & Sanmarti, M. (2014). European electric vehicle 
fleet: driving and charging data analysis. IEEE.  doi.org/10.1109/IEVC.2014.7056144 

Efthymiou, D., Antoniou, C., Tyrinopoylos, Y., & Mitsakis, E. (2009). Spatial exploration of 
effective electric vehicle infrastructure location. Procedia - Social and Behavioral 
Sciences, 48, 765–774. doi.org/10.1016/j.sbspro.2012.06.1054 

Franke, T., & Krems, J. F. (2013). Understanding charging behaviour of electric vehicle users. 
Transportation Research Part F: Traffic Psychology and Behaviour, 21, 75–89. 
doi.org/10.1016/j.trf.2013.09.002 

Ghamami, M., Nie, Y., & Zockaie, A. (2015). Planning charging infrastructure for plug-in 
electric vehicles in city centers. International Journal of Sustainable Transportation, 
10(4), 343–353. doi.org/10.1080/15568318.2014.937840 

Giménez-Gaydou, D., Ribeiro, A., Gutiérrez, J., & Antunes, A. (2014). Optimal location of 
battery electric vehicle charging stations in urban areas: A new approach. International 
Journal of Sustainable Transportation, 10(5), 393–405. 
doi.org/10.1080/15568318.2014.961620 

Huang, S., Safiullah, H., Xiao, J., Hodge, B., Hoffman, R., Soller, J., … Pekny, J. (2012). The 
effects of electric vehicles on residential households in the city of Indianapolis. Energy 
Policy, 49, 442–455. doi.org/10.1016/j.enpol.2012.06.039 

Jordan, J., Palanca, J., Noguera, E., & Vicente J. (2018). A multi-agent system for the dynamic 
emplacement of electric vehicle charging stations. Applied Sciences, 8, 313-328. 
doi.org/10.3390/app8020313 

Kong, C., Jovanovic, R., Bayram, I., & Devetsikiotis, M. (2017). A hierarchical optimization 
model for a network of electric vehicle charging stations. Energies 2017, 10(5), 675-
696. doi:10.3390/en10050675 

Langbroek, J., & Franklin, J. (2012). Electric vehicle users and their travel patterns in Greater 
Stockholm. Transportation Research Part D: Transport and Environment, 52, 98-111. 
doi.org/10.1016/j.trd.2017.02.015 

Li, S., & Huang, Y. (2011). Development of electric vehicle charging corridor for South 
Carolina. International Journal of Transportation Science and Technology, 4(4), 395–
411. doi.org/10.1016/S2046-0430(16)30170-8 



19 
 

Lin, H. (2014). Vehicle charging stations. Stanford University. Retrieved from stanford.edu 
Marcial, G. (2012). Electric car charging stations will be the next important issue for electric-

powered vehicles. Forbes. 
Morrissey, P., Weldon, P., & O’Mahony, M. (2016). Future standard and fast charging 

infrastructure planning: An analysis of electric vehicle charging behaviour. Energy 
Policy, 89, 257–270. /doi.org/10.1016/j.enpol.2015.12.001 

Motoaki, Y., & Shirk, M. G. (2017). Consumer behavioral adaption in EV fast charging 
through pricing. Energy Policy, 108, 178–183. doi.org/10.1016/j.enpol.2017.05.051 

Pennsylvania Department of Environmental Protection. (2019). Driving PA forward. Retrieved 
from depgis.state.pa.us 

Philipsen, R., Schmidt, T., Heek, J., & Ziefle, M. (2016). Fast-charging station here, please! 
User criteria for electric vehicle fast-charging locations. Transportation Research Part 
F: Traffic Psychology and Behaviour, 40, 119–129. doi.org/10.1016/j.trf.2016.04.013 

Philipsen, R., Schmidt, T., & Ziefle, M. (2012). A charging place to be - Users’ evaluation 
criteria for the positioning of fast-charging infrastructure for electro mobility. Procedia 
Manufacturing, 3, 2792–2799. doi.org/10.1016/j.promfg.2015.07.742 

Shahraki, N., Cai, H., Turkay, M., & Xu, M. (2015). Optimal locations of electric public 
charging stations using real world vehicle travel patterns. Transportation Research 
Part D: Transport and Environment, 41, 165–176. doi.org/10.1016/j.trd.2015.09.011 

Sioshansi, R., Fagiani, R., & Marano, V. (2010). Cost and emissions impacts of plug-in hybrid 
vehicles on the Ohio power system. Energy Policy, 38, 6703–6712. 
doi.org/10.1016/j.enpol.2010.06.040 

Thiel, C., Alemanno, A., Scarcella, G., Zubaryeva, A., & Passoglu, G. (2012). JRC Scientific 
and Policy Reports. doi.org/ 10.2790/67556 

Weldon, P., Morrissey, P., Brady, J., & O'Mahony, M. (2016). An investigation into usage 
patterns of electric vehicles in Ireland. Transportation Research Part D: Transport and 
Environment, 43, 207-225. doi.org/10.1016/j.trd.2015.12.013 

Wu, F., & Sioshansi, R. (2017). A stochastic flow-capturing model to optimize the location of 
fast-charging stations with uncertain electric vehicle flows. Transportation Research 
Part D: Transport and Environment, 53, 354–376. doi.org/10.1016/j.trd.2017.04.035 

Wu, H., & Niu, D. (2017). Study on influence factors of electric vehicles charging station 
location based on ISM and FMICMAC. Sustainability, 9(4), 484–503. 
doi.org/10.3390/su9040484 

Zhang, X. (2016). The design of electric vehicle charging network. Transportation Research 
Part D: Transport and Environment, 49. doi.org/10.1016/j.trd.2016.08.028 

Zhu, Z., Gao, Z., Zheng, J., & Du, H. (2017). Charging Station Planning for Plug-In Electric 
Vehicles. Journal of Systems Science and Systems Engineering, 27, 24–45. 
doi.org/10.1007/s11518-017-5352-6 

  



20 
 

Tables 
 

Table 2 
Sites Selected at the $50,000 Budget 

 
 
Table 3 
Sites Selected at the $100,000 Budget 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Business Time 
Spent 

Parking 
Spaces Hours Night 

Hours 
Shared 

Lot 

Distance 
to 

Highway 

Pop. 
within 1 

mile 

CS 
Capac. 

CS 
Cost 

Score 
Value 

CS 
Install. 

LV
2 

CS 

LV 
3 

CS 
Total Cost 

Restaurant 60 55 168 84 0 0.2 3223 2 $6,990 684.46 2 2 0 $13,980 
Bar 82.5 35 104 49 0 1 5971 1 $6,990 285.21 1 1 0 $6,990 

Golf Club 240 52 69 0 0 0.9 2245 2 $6,990 644.9 2 2 0 $13,980 
Country 

Club 240 130 60 12 0 0.9 3344 2 $6,990 672.88 2 2 0 $13,980 

Average 155.63 68 100.25 36.25 0 0.75 3695.75  $48,930 

Business Time 
Spent 

Parking 
Spaces Hours Night 

Hours 
Shared 

Lot 

Distance 
to 

Highway 

Pop. 
within 1 

mile 

CS 
Capac. 

CS 
Cost 

Score 
Value 

CS 
Install. 

LV
2 

CS 

LV 
3 

CS 
Total Cost 

Restaurant 60 55 168 84 0 0.2 3223 2 $6,990 684.46 2 2 0 $13,980 
Bar 82.5 35 104 49 0 1 5971 1 $6,990 285.21 1 1 0 $6,990 

Drive-in 
Theater 180 900 42 35 0 0.5 977 2 $6,900 523.54 2 2 0 $13,980 

Golf Club 240 52 69 0 0 0.9 2245 2 $6,990 644.9 2 2 0 $13,980 
Country 

Club 240 130 60 12 0 0.9 3344 2 $6,990 672.88 2 2 0 $13,980 

Bar 82.5 25 105 49 0 1.4 5911 1 $6,990 281.61 1 1 0 $6,990 
Bar/ 

Restaurant 82.5 60 115 49 0 4.3 5524 2 $6,990 517.48 2 2 0 $13,980 

Shopping 
Center 60 120 119 35 16 0.5 3587 2 $6,990 521.74 2 2 0 $13,980 

Average 128.44 172.13 97.75 39.13 2.00 1.21 3847.75  $97,860 
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Table 4 
Sites Selected at the $500,000 Budget 

 

 
Business 

Time 
Spent 

Parking 
Spaces Hours Night 

Hours 
Shared 

Lot 

Distance 
to 

Highway 

Pop. 
within 1 

mile 

CS 
Capac. 

CS 
Cost 

Score 
Value 

CS 
Install. 

LV
2 

CS 

LV 
3 

CS 
Total Cost 

Restaurant 60 55 168 84 0 0.2 3223 2 $6,990 684.46 2 2 0 $13,980 
Car Dealer 52.5 75 62 4 0 0.3 3353 2 $6,990 298.06 2 2 0 $13,980 
Restaurant 60 78 97 47 0 0.5 4047 2 $6,990 478.94 2 2 0 $13,980 
Restaurant 60 99 104 14 0 0.6 4780 2 $6,990 439.6 2 2 0 $13,980 

Walmart 30 600 168 84 0 1.2 6183 2 $56,80
0 331.83 1 0 1 $56,800 

Tattoo 52.5 24 45 5 2 1.1 6616 1 $6,990 159.66 1 1 0 $6,990 
Car Dealer 50 20 65 8 0 1.7 6989 1 $6,990 175.89 1 1 0 $6,990 
Car Dealer 50 20 65 8 0 1.7 6989 1 $6,990 175.89 1 1 0 $6,990 
Car Dealer 52.5 20 61 4 0 2 6420 1 $6,990 161.7 1 1 0 $6,990 
Car Dealer 52.5 20 61 4 0 2.1 7330 1 $6,990 169.8 1 1 0 $6,990 

Bar 82.5 25 105 49 0 1.4 5911 1 $6,990 281.61 1 1 0 $6,990 
Spa 120 50 37 2 0 1.5 5962 2 $6,990 407.24 2 2 0 $13,980 

Restaurant 65 30 34 19 0 1.7 6401 1 $6,990 165.01 1 1 0 $6,990 
Dance 
Studio 60 25 21 4 2 1.7 6401 1 $6,990 134.01 1 1 0 $6,990 

Bar 82.5 100 95 39 0 1.7 3971 2 $6,990 478.42 2 2 0 $13,980 
Golf 75 40 84 0 0 0.4 1639 1 $6,990 171.39 1 1 0 $6,990 

Drive In 
Theater 180 900 42 35 0 0.5 977 2 $6,990 523.54 2 2 0 $13,980 

Gym 60 20 9 0 3 0.5 982 1 $6,990 76.82 1 1 0 $6,990 
Cafe & 

Bar 82.5 20 117 49 0 0.8 2383 1 $6,990 264.33 1 1 0 $6,990 

Flowers 52.5 20 44 0 0 1.5 6737 1 $6,990 148.87 1 1 0 $6,990 
Bar 82.5 35 104 49 0 1 5971 1 $6,990 285.21 1 1 0 $6,990 

Medical 60 21 42 0 0 1 5971 1 $6,990 151.71 1 1 0 $6,990 
Shopping 

Center 90 70 30 18 14 1 5971 2 $6,990 403.42 2 2 0 $13,980 

Medical 60 20 32 0 0 0.8 4582 1 $6,990 129.82 1 1 0 $6,990.00 
Medical 82.5 20 39 0 0 0.8 4582 1 $6,990 159.32 1 1 0 $6,990 

Shopping 
Center 60 120 119 35 16 0.5 3587 2 $6,990 521.74 2 2 0 $13,980 

Realtor 60 31 76 10 0 0.5 3579 1 $6,990 176.79 1 1 0 $6,990 
Blood 
Bank 135 90 35 0 2 0.5 3396 2 $6,990 401.92 2 2 0 $13,980 

Medical 75 35 37 0 0 0.7 3354 1 $6,990 138.54 1 1 0 $6,990 
Library 60 55 58 4 0 1.6 1704 2 $6,990 246.08 2 2 0 $13,980 

Golf 240 52 69 0 0 0.9 2245 2 $6,990 644.9 2 2 0 $13,980 
Golf 60 60 70 7 2 0.4 357 2 $6,990 277.14 2 2 0 $13,980 

Restaurant 75 65 58 22 0 0.9 208 2 $6,990 296.16 2 2 0 $13,980 
Golf 240 130 60 12 0 0.9 3344 2 $6,990 672.88 2 2 0 $13,980 

Restaurant 150 46 30 13 0 0.6 3311 2 $6,990 440.22 2 2 0 $13,980 
Karate 

Academy 67.5 40 83.5 12.5 0 2.3 7204 1 $6,990 212.54 1 1 0 $6,990.00 

Dance 
Studio 60 52 82 10 0 2.2 6552 2 $6,990 391.04 2 2 0 $13,980 

Bar/ 
Restaurant 82.5 60 115 49 0 4.3 5524 2 $6,990 517.48 2 2 0 $13,980 

Salon 67.5 25 30 0 0 4.3 5851 1 $6,990 113.01 1 1 0 $6,990 
Medical 60 49 44 0 0 0.5 3882 2 $6,990 275.64 2 2 0 $13,980 
Medical 60 43 32 0 0 0.4 3882 2 $6,990 253.64 2 2 0 $13,980 

Auto Body 52.5 21 42.5 0 0 5 3279 1 $6,990 77.79 1 1 0 $6,990 
Auction 
Services 120 50 40 0 0 3.5 3427 2 $6,990 318.54 2 2 0 $13,980 

Average 155.63 68 100.25 36.25 0 0.75 3695.75  $497,170 
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Figures 
 
 

 
 
Figure 6. ChargePoint CT4013 Level 2 charging station. Retrieved from smartchargeamerica.com. 
 
 

 
 
Figure 7. ChargePoint CPE200 Level 3 charging station. Retrieved from smartchargeamerica.com. 
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Figure 8. Sites Selected for $50,000 Budget. 
 

 
 
Figure 9. Sites Selected for $100,000 Budget. 
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Figure 10. Sites Selected for $500,000 Budget. 
 
 


